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Abstract. We are concerned with a classical inequality due to Bernstein

which estimates the norm of polynomials on any given ellipse in terms of their

norm on any smaller elIipse with the same loci. For the uniform and a certain

weighted uniform norm, and for the case that the two ellipses are not atoo

dose", we derive sharp estimates of this type and determine the corresponding

extremaI polynornials, These Bernstein type inequMities are closely connected

with certain constrained Chebyshev approximation problems on e//ipses. We

also present some new results for a weighted approximation problem of this

type.

1. Introduction

Let l-I,, denote the set of all complex polynomials of degree at most n. For r _> 1, let

1
Er :={ z e c I Iz-ll+lz+ll <r+- } (1)

r

be the ellipse with loci at 4-1 and semi-axes (r 4-1/r)/2. Moreover, we Use the notation

I1 Ilerfor the u_iformnormllflle, = max_ If(z)l on er.
It is well known (see e.g. [8, Problem III. 271, p. 137]) that, for any n E IN and

R>r>_l,
R _

IIplI_R-< 7 Ilvlle, foran p c n,, (2)
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We remark that for the caser ---1, £1 = [-1, 1], this inequality goes back to Bernstein

(see [2] and the references therein). It is also well known (see [12, p. 368]) that the

estimate (2) is not sharp, i.e. equality in (2) holds only for the trivial polynomial p - 0.

In this note, we are mainly concerned with the following two problems: find the

best possible constants Cn(r, R) and Cn+l/2(r, R) such that

IIPlIER<_C.(r,R) ItPller for an p _ II. (3)

and

llwplleR _<C.+l/2(r,R)Ilwpllc_ for all p E IIn , (4)

respectively. Here, and in the sequel, w denotes the weight function w(z) = x/7 + 1,

and it is always assumed that the square root is chosen such that w maps the z-plane

onto {Rew > 0} t3 {ir/[7 / > 0}. We notice that the usual proof (e.g. [8, p. 320]) for

(2) immediately carries over to the weighted case (4) and leads to the upper bound

C,+I/2(r,R) < R"+_/2/r"+_/=. For the classical case r = 1, Frappier and Rahman [2]
conjectured that

1 n._2) 1(R°+1/2 R--3/2)C.(1,R) = _(R"+ and C.+,/_(1,R)= _ + (5)

The first identity in (5) was proved in [9] for n = 1 and in [4] for n = 2, R > v/3. The

second relation in (5) is known to be true for n = 1 and R > 1.49 [4]. It seems that

these are the only cases for which the best possible constants in (3) and (4) are known.

In this paper, sharp estimates (3) and (4) will be obtained for the case n C £q,

r > 1, and R not "too close" to r. More precisely, we will prove the following

Theorem 1. Let n C 1N and r > !.

a) If
73r 4 - 1 33r - 1

R > r r4 1 resp. R > r (6)- - - r-1 '

then

R" + 1/R" R"+I/2 + 1/Rn+I/2

c.(_,R)- _. + 11_" reap. Cn+il2(r,R)---- rn+]12 + 1/r-+1/2 (7)

with equality hoIding in (3) resp. (4) only t'or the polynomials

p(z) - _(T.(z)+i
26

R,_I,R,),/ -_eC,_e[-1,1] _e_p. p(z)-_V,(z), zeC. (S)

Moreover, if, = 1, the first identity in (7) hoIds true for all R > r.

b)
R n + 1/R" R nA-1/2 + 1/Rn+l/2

C,(r,R) > and Cn+_/2(r,R) >
r n + 1/r n rn+l/2 + 1/rn+l/2
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for all R > r.

In (8) and in the following, the notation Tk is used for the kth Chebyshev polynomial

which by means of the Joukowsky map is given by

1 I I (,,+ , (9)

and, moreover,
Tk+l(z) + T,(z)

Vk(z)- V_(z + 1)
(10)

Notice that (10) defines indeed a polynomial of degree k, and that Vk is up to a scalar

factor just the kth Jacobi polynomial p(k-1/_'1/2) associated with the weight function

(1- z)-1/2(1 A- z) 1/2 on [--1,1] (cf. Szeg5 [13, p. 60]).

Remark 1. The estimates (6) are very crude in the following sense. Let R,(r) resp.

R,_+l/2(r) denote the smallest numbers such that the first resp. the second identity in

(7) is satisfied for all R >_ R,(r) resp. R > R,+_/2(r). Numerical tests reveal that

R,(r) and R,,+m/2(r) are much smaller than the upper bounds in (6). Moreover, these

experiments suggest that Rn(r), Rn+l/2(r) _ r for large n. However, we were not able

to prove these numerical observations.

Although the weighted norms in (4) might appear somewhat artificial, note that

(4) arises naturally if, using the Joukowsky map (cf. (9)), one rewrites the estimates

(3) and (4) for the disks Iv[ < R, Iv[ < r, and the class of self-reciprocal polynomials

_m := { s c IIm I _"'41/v) -=s(v) }

(cf. [2,4,5]). More precisely,

. 1 1
v V(5(v+_))=4v ) , Veil,, seS2, ,

1 l(v 1reap. ,"+'/2w( (v + _))V(_ + ;)) _--__s(,) , Ve 1I,, s e _n+l ,

(11)

defines a one-to-one mapping between II,, and S2n resp. _2n+1. With (11), it is easily

verified that (3), (4) are equivalent to

max 14v)l for 41 s e _m (12)
max Is(v)] < D,n(r,R) I_1-<_M_<R

where (3) and (4) correspond to the case m = 2n and m = 2n + 1, respectively.

Moreover, the best possible constants in (3), (4), and (12) are connected by D,,(r, R) =

(R/r)m/2C,,,/_(r,R). Rewriting Theorem 1 for (12), then yields the following

Corollary. Let m > 2 be an integer and r > I.

a) If

{ (73,-*- 1)1(,.4- 1)R >_,. • (33,.- I)1(,'- 1)

if m is even

if m is odd

$hen
R m +I

Dm(r,R)- r m + l
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s(v) _=3' (v 2" + i

and

with equaIity holding in (12) ortly for the poIynomials
@

45
v"+l), -reC, a_[-lll l,

Rn-1/R n

8(V)__3/(Vm -3t-1), _ E C, if

Moreover,D2(r,R) = (R2+ 1)/(r 2+ 1) for a//R > r.
b)

rn is odd

if m= 2n is even ,

R m +1
Dm(r,R) > for all R > r

rm+l

Our proof of Theorem 1 is based on the obvious representations

1
C.(_,n)= max and Cn+l/_(_,n)=

c_ocR E.(_, c)

1
max (13)

ceOER En+l/2(r, c)

of the sharp constants in (3) and (4) in terms of the optimal values of the family of

constrained Chebyshev approximation problems

and

(En(r,c) :=) rain IIPlIE, (14)
pEII.:p(c)=l

(E.+a/_(_,c) :=) _n IlwcPllcr where we(z) -_ w(z)lw(c) (15)
pEIIn:p(c)=l

Here, c E C \ £r in (14) and (15), and, in (13), 0£R denotes the boundary of £n. The

class of complex approximation problems (14) was investigated recently by Fischer and

Freund [3]. In particular, the part of Theorem 1 which is concerned with the Bernstein

type inequality (3) will follow from results given in [3]. In the present note, we will also

derive some new results for the weighted variant (15).

The outline of the paper is as follows. In Section 2, we establish some auxiliary

results. In Section 3, the complex weighted approximation problem (15) is studied.

Finally, remaining proofs are given in Section 4.

2. Preliminaries

In this section, we introduce some further notations and list two lemmas. It will be

convenient to define, in analogy to the Chebyshev polynomials (9), the functions

1 1 1) k=0,1,...
Tk+,/_(z) = _(v k+1/2 + vk+,/------_) , z =_ _ v ' (16)

Here the square root v _ is chosen, correspondingly to w(z) = v/_ + 1, such that v _

maps the v-plane onto {Re¢ > 0} U {iT/]_ > i or -1 < ,7 < 0} (cf. [4]). With (10) and

(16), one readily verifies that then

Tk+_/=(z)= w(z)Yk(z) , _ e C , (17)



holds.

For the boundary points z E O£r of the ellipse (1), we will use the parametrization

1 1 i 1

Z=Zr(qO)=_(r+r)COS_+_(r-r)Sin_o , -rr<q__<r (18)

With (16) and (18), it follows that

1 1

Tk+l/2(z,.(_o)) = ak cos(k + _)_o + ibksin(k + _)_o , -zr < _ < r

where

, (10)

1 1 [trk+l/2 1a_ := L("_+'/22" + r_+l/----z) and b_ := _ r_+1/2) (20)

Next, assume that n _ IN and r > 1. Using (17) and (19), we deduce that

[IwVnlle, = an (21)

All corresponding extremal points zt E £,., defined by Iw(z )Vn(zz)l= IIwV_lle,, are

given by

21r

zt:=zr(qot) , q01:= 2n+1 ' l=-n,-n+l,...,n-l,n (22)

Moreover, we note that, in view of (i7), (19), and (22),

= (-1) I a"
w(zl) ' l=-n,...,n (23)

The following property of the numbers _t will be used in the next section.

Lemma 1. Let j E 2g. Then:

n (--1) lei_r(j+_) __ {
2,,+1 (24)2n + 1 if __21g + 1

t=-n 0 otherwise

Proof. With q := (2j + 1)/(2n + 1), we have e i_''(i+x/2) = (eqTri) I. If q e 2g + 1, then

e q'_ = -1, and (24) is obviously true in this case. For q _' 22g + 1, (24) follows from

n

l-_. m n

1 -- (--eq_ri) 2n+1

1 + eq_i

and (-eq'_i) 2n+1 = 1. •

Finally, we will apply the following result due to Rogosinski and Szeg5 [11] in

Section 4.

Lemma 2. Let Ao, A1,...,An be reM numbers which satisfy An >_ O, A,,-1 - 2An :> O,

and Ak-1 - 2Ak + At,+1 >_ 0 for k = 1,2,...,n- 1. Then:

"_0 n

t(_o) := _-+EAkcos(k_o) _> 0 forall cpelR (25)
k=l
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3. Results for the weighted approximation problem (15)

In this section, we are concerned with the constrMned Chebyshev approximation prob-

lem (15). In the sequel, it is assumed that n E ]N, r _> 1, and e E C \ £r. Standard

results from approximation theory (see e.g. [6]) then guarantee that there always exists

a unique optimal polynomial for (15). For the case r = 1 of the unit interval Ca = [-1, 1]

and e E ]R \ [-1, 1], Bernstein [1] proved that the rescMed polynomial (10)

v,(z;c) = Vn(z) (26)
V.(e)

is the extremal function for (15). For purely imaginary c and, again, r = 1, Freund and

Ruscheweyh [4] showed that the optimal polynomial is a suitable linear combination of

vn, Vn--Z, and vn-2. To the best of our knowledge, these two cases seem to be the only

ones for which the solution of (15) is explicitly known.

For the rest of the paper, we assume that r > 1. It turns out that, somewhat

surprisingly, (26) is also best possible for the general class (15) with complex c as long

as e is not "too close" to G. For the following, it will be convenient, to represent e _' _0_
in the form

¢=er(¢)= cos¢+ R- sine , R>., < <. (27)

In analogy to (19) and (20), it follows that

:= Tk+l/2(c) = Akcos(k + 1)¢ + iBksin(k + 1)¢ (28)dk

where

1 (Rk+l/2 1 2"1(Rk+l/2 1Ak := + Rk+lZ) and Bk := Rk+l/2 ) (29)

Based on Rivlin and Shapiro's characterization [10] of the optimal solution of gen-

eral linear Chebyshev approximation problems, we next derive a simple criterion for the

polynomial (26) to be best possible in (15). Note that the extremal points of vn(z; c)

are just the zl, l = -n,..., n, stated in (22). By applying the theory [10] to (15), (26),

and by using (23), we obtain the following

Criterion. vn(z; c) is the un/que optimal polynomial t'or (15) iff there exist nonnegative

real numbers a-n, a-n+z,..., a,, (not all zero) such that

a (-1)lw(zt)q(zt) = o yor all q e II. with q(c) = 0 (30)

Clearly, it suffices to check (30) for the polynomials

q(z) - Vk(z)-- Vk(e) , k = 1,2,...,n
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With (17) and (28), this leads to the following equivalent formulation of (30):

n

E at(-1)i(d°Tk+l/2(zt)-dkT1/z(zl))=O , k=l,2,...,n (30')

It turns out that there are simple formulae for all real solutions at of (30'). The trick is

to use the ansatz

n 2I_

a,=E(pjcos(j_t)+vjsin(fipl)) , _t-2n+l , l=-n,...,n , (31)
j=0

where #j, vj E IR, j = 0,..., n. Note that such a representation (31) is possible for any

collection of a-n,..., a, E IR. Now we insert (31) into (30') and rewrite Tk+l/2(zz) and

T1/2(zt) in the form (19). Then, a routine calculation, making repeatedly use of Lemma

1, shows that (30') reduces to the equations

I_ka,_-k -- i1.'kb,-l, -- (d,-k/do)(l_nao - iv, bo) = 0 , k = 1,2,...,n- 1 , (32a)

and

2poan - (dn/do)(pnao - ir',bo) = 0 (32b)

By determining all real solutions #k, vk of the linear system (32a,b) and with (31), one

easily verifies that all real numbers satisfying (30') are given by at = ra_', I = -n,..., n

with r E ]R arbitrary and a_ defined in (33). ttence, in view of the Criterion, we have

proved the following

Theorem 2. v,(z; c) is the unique optima2 polynomiM in (15) iff the numbers

1 ld.I= Re(d._k ) cos(kqat) + sin(k_,) , (33)
a_ := 2 a. _-'\ a.-k b.-k

k=l

l=-n,-n+l,...,n-l,n ,

are either all nonnegative or all nonpositive. Here ak, bk, dk, and q_ are defined in (20),

(28), and (22).

The numbers (33) are positive whenever R/r is sufficiently large. In particular, in

the next section we will prove the following

Theorem 3. Let c = CR(¢) with R > r > 1 (cf. (27)). Then:

a) r n+l/2 -4- l/r n+l/2

E.+l/2(r,c) < (34)
4(R-+'/2 + 1IRa+'�2) 2 -4sin2(n + 1/2)¢

b) It R >>_r(33r - 1)/(r - 1), then v,(z;c) is the unique optima2 polynorniad t'or (15)

and equality holds in (34).

For the case that c in (15) is real, we have the following sharper result.
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Theorem 4. Let r > 1 and c 6 _. If(i) c > r + 1/r - 1/2 or (ii) c < -r, then vn(z;c)

is the unique optimal polynomial for (15) and

rn+al 2 + 1/rn+ll 2

Rn+I/2 + 1/Rn+1/2 in case (i)En+a/2(r, c) = r "+1/2 + 1/r"+1/2

R-va-Z-l-Th-_7_ in ca_e(ii)

Remark 2. In contrast to the case r = 1, for r > 1, the polynomial vn(z;c) is not

best possible in (15) for all c 6 IR \ £,-. Indeed, numerical tests show that among the

corresponding numbers (33), in general, positive and negative a_ occur if c is very close
to £,-.

Finally, we note that Theorem 3 is analogous to the following result for the un-

weighted approximation problem (14).

Theorem A. (Fischer,Freund[3]).Let _= oR(C),'ith _ > r > 1 (_r. (2z)) Then:
a)

r n + 1/r n

E,_(r,c) <_ R" + I/R n (35)

b) If_ > r(73_4- 1)/(_4 - 1), then

(R" - 1/R")Tn(z) + 2i sin(he)

p,(z;c)- (Rn 1/Rn)T_(c)+eisin(_¢)

is the unique optimal polynomial for (14) and equality holds in (35).

Remark 3. For n = 1, (14) was solved completely by Opfer and Schober [7]. From

their result, one can deduce (see [3]) that, for the case n = 1, the statement in part b)
of Theorem A is true for all R > r > 1.

Clearly, in _iew of (13), Theorem 1 is an immediate consequence of Theorem 3,

Theorem A, and Remark 3. The proofs of Theorem 3 and 4 will be given in the next
section.

4. Proofs of Theorem 3 and 4

Proof of Theorem 3. With (17) and (21), it follows that

- _(¢)v_(c) _ IT.+_/_(¢)I

By (20) and (28) (both with k = n), the right-hand side is just the upper bound in (34).

We now turn to part b). Using (28) and (29), it follows that

[Re(dkd,_--'-)[ <_ AkAn + BkBn <_ R n+k+a ,

[ Im(dkd--'_')[ _< AkB,, + BkA,, <_ R "+k+_ ,
(36)



and

Id.I 2 > A2n- 1 > 1R2n+l(1 - 2/R 2n+1)
- - 4 "

Let a_ be given by (33). With (36), (37), and (20), we obtain the lower bound

(37)

_ > _( r, ;-_-"
n--1

2 (rR__.)k r 4k+1R 2n+l)-4Rn+IV/_ r 4k+2- 1
k=0

(38)

Now assume that R_r(33r-1)/(r-1). With

2 1
1 > - and

R 2n+l - 2

r 4k+l r

< " k= 0,I,
r 4k+2 -- 1 -- r _ - 1 ' "'"

we deduce from (38) that

_ > 1(R2_" Rv_ ,'_
- 8\ r / (r+l)(R-r)(R-r-32_-I)>0

In view of Theorem 2, this concludes the proof of Theorem 3. •

Proof of Theorem 4. First we consider the case (i), i.e. assume that

1
-- r 2

Then ¢ = 0 in (28), and the representation (33) reduces to

(39)

(1An _ An-k_ = An -- + cos(k_,)), l = -n,...,n
an k--1 an-k

It follows that a[ = Ant(Cpl) where t is the trigonometric polynomial (25) with

An A.-k
)to :=-- and Ak = , k =l,...,n (40)

an an--k

Therefore, Theorem 2 together with Lemma 2 implies that Vn is best possible in (15)

provided that the numbers (40) satisfy the assumptions of Lemma 2. Hence, it remains

to verify that the estimates

A1
>2 --vA" and Ak+l 2Ak + Ak-1 >0 , k 1,.. n-1 (41)

al ao ak+l ak ak-I

hold. It is easily seen that the first condition in (41) is equivalent to (39). A more

lengthy, but straightforward, computation shows that (39) also guarantees that the

remaining inequalities in (41) are satisfied. We omit the details.

For the case (ii), c < -r, one proceeds similarly. Now ¢ = r in (28), and from (33) we

obtain

,1 Bn + Bn-k
er'[ =Bn[5.-_n + __cosk(qo/-4-Tr)) , l=--n,...,n

k=l an-k
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By applying Lemma 2, this time with

Bn Bn-k
A0 :--D and Ak--_ , k=l,...,n , (42)

an an-k

and Theorem 2, we conclude that vn is the optimal polynomial for (15) if the assump-

tions of Lemma 2 are satisfied. A lengthy computation shows that the condition c _< -r

indeed implies that the numbers (42) fulfill the required inequalities. Again, details are
omitted here. •

Acknowledgement. The author would like to thank Dr. Bernd Fischer for perform-

ing some numerical experiments which were very helpful for developing the results of
Section 3.
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